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REAL-TIME OPTIMIZATION AS A GENERALIZED EQUATION

VICTOR M. ZAVALA AND MIHAI ANITESCU∗

Abstract. We establish results for the problem of tracking a time-dependent manifold arising in real-
time optimization by casting this as a parametric generalized equation. We demonstrate that if points along
a solution manifold are consistently strongly regular, it is possible to track the manifold approximately by
solving a single linear complementarity problem (LCP) at each time step. We derive sufficient conditions
guaranteeing that the tracking error remains bounded to second order with the size of the time step, even if
the LCP is solved only approximately. We use these results to derive a fast, augmented Lagrangian tracking
algorithm and demonstrate the developments through a numerical case study.
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1. Introduction. Advanced real-time optimization, control, and estimation strategies
rely on repetitive solutions of nonlinear optimization (NLO) problems. The structure of the
NLO is normally fixed, but it depends on time-dependent data obtained at predefined sampling
times (e.g., sensor measurements and model states).

Traditional on-line NLO strategies try to extend the sampling time (time step ∆t) as much
as possible in order to accommodate the solution of the NLO to a fixed degree of accuracy.
A problem with this approach is that it neglects the fact that the NLO solver is implicitly
tracking a time-dependent solution manifold. For instance, insisting on obtaining a high
degree of accuracy can translate into long sampling times and increasing distances between
subsequent problems. In turn, the number of iterations required by the NLO solver increases.
This inconsistency limits the application scope of on-line NLO to systems with slow dynamics.

Approximate on-line NLO strategies, on the other hand, try to minimize the time step by
computing a cheap approximate solution within a fixed computational time. Since shortening
the time step reduces the distance between neighboring problems, this approach also tends
to reduce the approximation (manifold tracking) error. These strategies are particularly at-
tractive for systems with fast dynamics. However, an important issue is to ensure that the
tracking error will remain stable.

Approximate strategies such as real-time iterations and continuation schemes have been
studied previously in the context of model predictive control and state estimation. These
strategies solve a single Newton-type step at each sampling time [21, 27, 9, 10, 26, 25]. In
the real-time iteration strategy reported in [9, 10], the model is used to predict the data
(e.g., states) at the next step, and a perturbed quadratic optimization (QO) problem is solved
once the true data becomes available. In the absence of inequality constraints, the perturbed
QO reduces to a perturbed Newton step obtained from the solution of a linear system. It
has been demonstrated that, by computing a single Newton step per time step, the tracking
error remains bounded to second order with respect to the error between the predicted and
the actual data. In order to prove this result, a specialized discrete-time, shrinking-horizon
control setting was used [10]. In [12], conditions for closed-loop stability of receding-horizon
control were derived in the presence of approximation errors. A limitation of these analyzes
is that the impact of the size of the time step gets lost and it is thus difficult to analyze
behavior as ∆t→ 0. In addition, the results cannot be applied directly in other applications.
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Furthermore, no error bounds have been provided for the case in which non smoothness effects
are present along the manifold due to the presence of inequality constraints.

The continuation scheme reported in [26, 25] is a manifold tracking strategy in which the
optimality conditions of the NLO are formulated as a differential equation. This permits a
detailed numerical analysis of the tracking error as a function of the size of the time step. Suf-
ficient conditions for the stability of the tracking error are derived. However, no order results
are established. For implementation, the differential equation is linearized and discretized
to derive the Newton step. The resulting linear system is solved approximately by using an
iterative scheme such as generalized minimum-residual (GMRES) [32]. The use of an iterative
linear solver is particularly attractive because it can be terminated early, as opposed to direct
solvers. This is important in an on-line environment since it can significantly reduce the size
of the time step. However, a limitation of continuation schemes is that inequality constraints
need to be handled indirectly using smoothing techniques (e.g., barrier functions [26, 34, 11])
which can introduce numerical instability.

In this work, we present a framework for the analysis of on-line NLO strategies based on
generalized equation (GE) concepts. Our results are divided in two parts. First, we demon-
strate that if points along a solution manifold are consistently strongly regular, it is possible to
track the manifold approximately by solving a single linear complementarity problem (LCP)
per time step. We derive sufficient conditions that guarantee that the tracking error remains
bounded to second order with the size of the time step, even if the LCP is solved only approx-
imately. These results generalize the approximation results in [10, 26] in the sense that we
consider both equality and inequality constraints, with the possibility of changing the active-
set along the manifold. In particular, the proposed approach does not require any smoothing,
which makes it numerically more robust. Second, we derive an approximation approach where
the NLO is reformulated using an augmented Lagrangian function. This permits the use of a
matrix-free, projected successive over-relaxation (PSOR) algorithm to solve the LCP at each
sampling time [22, 20, 3, 23]. We demonstrate that PSOR is particularly efficient because it
can perform linear algebra and active-set identification tasks efficiently.

The paper is structured as follows. In the next section, we review basic concepts of para-
metric NLO and generalized equations. In Section 4 we will establish general approximation
results and derive stability conditions for the tracking error. In Section 5 we will specialize
these to the context of nonlinear optimization. The augmented Lagrangian tracking algo-
rithm and associated stability properties are presented in Section 6. A numerical case study
is provided in Section 7. The paper closes with conclusions and directions of future work.

2. Motivation. In this work, we analyze parametric NLO problems of the form

min f(x, t), s.t. c(x, t) = 0, x ≥ 0. (2.1)

Here, x ∈ ℜn are the decision variables, t ∈ ℜn is a scalar parameter, and the mappings
f : Ω × T → ℜ, c : Ω × T → ℜm are assumed to be continuously differentiable from the
open sets Ω ⊆ ℜn and T ⊆ ℜ. To simplify our discussion and, without loss of generality, we
consider only the case where all components of x are subject to inequality constraints. The
first-order optimality conditions of this problem are

∇xL(w, t)− ν = 0, c(x, t) = 0, xT ν = 0, x ≥ 0, ν ≥ 0. (2.2)

The Lagrange function is defined as

L(w, t) = f(x, t) + λT c(x, t), (2.3)
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where λ ∈ ℜm are Lagrange multipliers and wT = [xT , λT ]. Equivalently, (2.2) can be
formulated without introducing the multipliers ν ∈ ℜn as:

xT∇xL(w, t) ≥ 0, c(x, t) = 0, x ≥ 0. (2.4)

The optimality conditions can be posed as a parametric generalized equation (GE) of the
form,

0 ∈ ∇xL(w, t) +Nℜn+(x) (2.5a)

0 ∈ c(x, t) +Nℜm(λ), (2.5b)

where ℜn+ is the non-negativity orthant. Given sets K,W and Z, the multifunction NK :
W → 2Z is the normal cone operator,

NK(w) =

{
{ν ∈W | (w − y)T ν ≥ 0, ∀ y ∈ K} if w ∈ K

∅ if w ̸∈ K. (2.6)

The above notation is used to analyze the optimal conditions using geometric arguments.
Parametric NLO problems arise in on-line optimization applications such as state and pa-
rameter estimation [29], model predictive control [6], signal processing [19], on-line economic
optimization [18, 37], American options pricing [14], multi-body rigid dynamics [2], among
others. The decision variables x usually represent controls and states of the dynamic model of
a system while the time-dependent data (represented by t) are observations generated by the
real system. For instance, in state estimation, the decision variables are the initial conditions
of the model while the data represents observations to be fitted. In model predictive control
and on-line economic optimization, the decision variables are the controls fed to the system
while the data are the current states and incoming price and disturbance (e.g., weather)
information.

Under certain regularity conditions (see Section 5), the solution of the parametric NLO
forms a non-smooth and continuous manifold [15]. In this work, we are interested in estab-
lishing approximate algorithms to track the solution manifold of parametric NLOs close to
real-time. This will enable higher frequency solutions (as desired in most applications) and the
consideration of more detailed models, longer prediction horizons, and more decision variables.
We emphasize that our results are general and try to capture the basic essence of different
time-dependent applications. This comes at the expense of sacrificing details arising in specific
domains such as model predictive control.

3. Generalized Equations. In this section, we use the notation from [30, 7]. The
optimality conditions (2.5) can be posed as a parametric GE problem of the form: For a given
t ∈ T ⊆ ℜ, find w ∈W ⊆ ℜn such that

0 ∈ F (w, t) +NK(w). (3.1)

Here, F :W × T → Z is a continuously differentiable mapping in both arguments with

F (w, t) =

[
∇xL(w, t)
c(x, t)

]
(3.2)

and K = ℜn+ × ℜm ⊆ W is a polyhedral convex set. We denote the solution of (3.1) as w∗
t .

In addition, we define the derivative mapping Fw(w, t) := ∇wF (w, t) and assume that it is
Lipschitz in both arguments with constant LFw , ∀w ∈ W, t ∈ T . Our final goal is to create a
discrete-time tracking scheme w̄tk providing a cheap but stable approximation of the solution
of (3.1), w∗

tk
. To achieve this, we will perform a single truncated Newton iteration for the

generalized equation per time step.
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3.1. The Nonlinear Equation Case. A good intuition as to why a truncated Newton
scheme is sufficient to track the solution manifold can be easily explained by considering the
case without inequality constraints or, equivalently, when K = ℜn and F (w, t) = 0. In this
case, the optimality conditions reduce to a set of nonlinear equations. Consequently, standard
calculus and standard calculus results can be used to establish error bounds and stability
conditions for approximate tracking schemes. This approach has been followed in [10, 26]. In
this section, we perform a simple and informal analysis in order to motivate the results of later
sections. In the absence of inequality constraints, the approximate tracking scheme w̄tk , k > 0
can be obtained from the recursive solution of the truncated linear Newton system:

rϵ = F (w̄tk , tk+1) + Fw(w̄tk , tk)(w̄tk+1
− w̄tk) (3.3)

where rϵ is the solution residual satisfying ∥rϵ∥ ≤ κϵ > 0. Assume by now that the linearization
point w̄tk satisfies ∥w̄tk − w∗

tk
∥ ≤ κr where F (w∗

tk
, tk) = 0. In addition, we assume that the

solution manifold is Lipschitz continuous (see Theorem 4.1) such that ∥w∗
tk+1
−w∗

tk
∥ ≤ Lw∆t

with ∆t = tk+1 − tk and κr, Lw > 0. We need to establish conditions leading to stability of
the tracking error in the sense that:

∥w̄tk − w∗
tk
∥ ≤ κr ⇒ ∥w̄tk+1

− w∗
tk+1
∥ ≤ κr.

From the mean value theorem we have that,

0 = F (w∗
tk+1

, tk+1) = F (w∗
tk
, tk+1) +

∫ 1

0

Fw

(
w∗
tk

+ χ(w∗
tk+1
− w∗

tk
), tk+1

)
(w∗

tk+1
− w∗

tk
)dχ

(3.4)

and,

F (w∗
tk
, tk+1) = F (w̄tk , tk+1) +

∫ 1

0

Fw
(
w̄tk + χ(w∗

tk
− w̄tk), tk+1

)
(w∗

tk
− w̄tk)dχ. (3.5)

Plugging (3.3) in (3.5),

F (w∗
tk
, tk+1) = rϵ − Fw(w̄tk , tk)(w̄tk+1

− w̄tk)

+

∫ 1

0

Fw
(
w̄tk + χ(w∗

tk
− w̄tk), tk+1

)
(w∗

tk
− w̄tk)dχ. (3.6)

From (3.6) and (3.4) we obtain,

Fw(w̄tk , tk)(w̄tk+1
− w̄tk)

= rϵ +

∫ 1

0

Fw

(
w∗
tk

+ χ(w∗
tk+1
− w∗

tk
), tk+1

)
(w∗

tk+1
− w∗

tk
)dχ

+

∫ 1

0

Fw
(
w̄tk + χ(w∗

tk
− w̄tk), tk+1

)
(w∗

tk
− w̄tk)dχ

Fw(w̄tk , tk)(w̄tk+1
− w∗

tk+1
+ w∗

tk+1
− w∗

tk
+ w∗

tk
− w̄tk)

= rϵ +

∫ 1

0

Fw

(
w∗
tk

+ χ(w∗
tk+1
− w∗

tk
), tk+1

)
(w∗

tk+1
− w∗

tk
)dχ

+

∫ 1

0

Fw
(
w̄tk + χ(w∗

tk
− w̄tk), tk+1

)
(w∗

tk
− w̄tk)dχ
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Fw(w̄tk , tk)(w̄tk+1
− w∗

tk+1
)

= rϵ +

∫ 1

0

(
Fw

(
w∗
tk

+ χ(w∗
tk+1
− w∗

tk
), tk+1

)
− Fw(w̄tk , tk)

)
(w∗

tk+1
− w∗

tk
)dχ

+

∫ 1

0

(
Fw
(
w̄tk + χ(w∗

tk
− w̄tk), tk+1

)
− Fw(w̄tk , tk)

)
(w∗

tk
− w̄tk)dχ.

Bounding terms,

∥Fw(w̄tk , tk)∥∥w̄tk+1
− w∗

tk+1
∥

≤ κϵ + LFw∥w∗
tk+1
− w∗

tk
∥
∫ 1

0

(
∥w∗

tk
− w̄tk∥+ χ∥w∗

tk+1
− w∗

tk
∥+∆t

)
dχ

+ LFw∥w∗
tk
− w̄tk∥

∫ 1

0

(
χ∥w∗

tk
− w̄tk∥+∆t

)
≤ κϵ + LFw∥w∗

tk+1
− w∗

tk
∥
(
∥w∗

tk
− w̄tk∥+

1

2
∥w∗

tk+1
− w∗

tk
∥+∆t

)
+ LFw∥w∗

tk
− w̄tk∥

(
1

2
∥w∗

tk
− w̄tk∥+∆t

)
.

Then,

∥Fw(w̄tk , tk)∥∥w̄tk+1
− w∗

tk+1
∥ ≤ κϵ + LFwLw∆t

(
κr +

1

2
Lw∆t+∆t

)
+ LFwκr

(
1

2
κr +∆t

)
∥w̄tk+1

− w∗
tk+1
∥ ≤ κψκϵ + κψLFwLw∆t

(
κr +

1

2
Lw∆t+∆t

)
+ κψLFwκr

(
1

2
κr +∆t

)
,

where κψ = 1
∥Fw(w̄tk ,tk)∥

. For stability we require ∥w̄tk+1
− w∗

tk+1
∥ ≤ κr. This implies,

κr ≥ κψκϵ + κψLFwLw∆t

(
κr +

1

2
Lw∆t+∆t

)
+ κψLFwκr

(
1

2
κr +∆t

)
.

Rearranging,(
1− 1

2
LFwκψκr

)
κr ≥ κψκϵ + κψLFw(Lw + 1)∆t κr + LFwκψLw

(
1

2
Lw + 1

)
∆t2.

Stability follows if
(
1− 1

2LFwκψκr
)
> 0 and if there exist κ ≥ 0 and ∆t satisfying,

αNLE1 ∆t κr ≤ κ∆t2 (3.7a)

αNLE2 ∆t2 + κψκϵ ≤ αNLE3 κr, (3.7b)

where αNLE1 , αNLE2 , αNLE3 are defined in the Appendix A. At every time tk, w̄tk+1
is obtained

by solving (4.2). This is an approximation of w∗
tk+1

. We have thus created an algorithm that
tracks the solution manifold of F (w, t) = 0 by solving (within κϵ) a single truncated Newton
step per time step. This allows us to use iterative linear algebra algorithms that can be ter-
minated early. Note that the above conditions guarantee that if, κr, κϵ = O(∆t2) then, the
tracking error remains O(∆t2) for all k > 0.
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Stability results can also be established for the more general case including inequality
constraints (i.e., the coneK is not trivial), but this task is not straightforward. The difficulties,
as pointed out in [10, 26], are technical and include the fact that, in the presence of inequality
constraints, we cannot algebraically invert the Newton system. In particular, this enables to
compute κψ = 1

∥Fw(w̄tk ,tk)∥
explicitly. In addition, nonsmoothness effects prevent the direct

application of standard calculus results. These are the difficulties we resolve in the following
sections through the use of GE concepts.

3.2. Linearized Generalized Equations. An important consequence of the structure
of (3.1) is that it allows us to analyze the smooth and nonsmooth components independently.
With this, theoretical properties can be established as in the nonlinear equation case of Section
3.1. We start by defining the linearized generalized equation (LGE) at a given solution w∗

t0 ,

r ∈ F (w∗
t0 , t0) + Fw(w

∗
t0 , t0)(w − w

∗
t0) +NK(w) (3.8)

If K = ℜn+, solving the above LGE is equivalent to solving the perturbed linear complemen-
tarity problem,

w ≥ 0, ν = F (w∗
t0 , t0) + Fw(w

∗
t0 , t0)∆w − r ≥ 0, wT ν = 0. (3.9)

If Fw is a symmetric matrix then (3.9) are, in turn, the optimality conditions of the quadratic
optimization (QO) problem,

min
∆w≥−w∗

t0

1

2
∆wTFw(w

∗
t0 , t0)∆w + F (w∗

t0 , t0)
T∆w − rT∆w. (3.10)

We can rewrite (3.1) at any point (w, t) in the neighborhood of w∗
t0 in terms of (3.8) by defining

the residual,

r(w, t) = F (w∗
t0 , t0) + Fw(w

∗
t0 , t0)(w − w

∗
t0)− F (w, t). (3.11)

This gives, for any point satisfying (3.1),

r(w, t) ∈ F (w∗
t0 , t0) + Fw(w

∗
t0 , t0)(w − w

∗
t0) +NK(w). (3.12)

The above formulation will allow us to bound the distance between (w∗
t0 , t0) and neighboring

points (w, t) in terms of r(w, t).
Central to this study is the inverse operator ψ−1 : Z → W of the perturbed LGE (3.12)

which we define as

w ∈ ψ−1[r] ⇔ r ∈ F (w∗
t0 , t0) + Fw(w

∗
t0 , t0)(w − w

∗
t0) +NK(w). (3.13)

In other words, the operator is a multifunction from the space of the residual (perturbation)
of the LGE to the space of the solution. Note that the operator ψ−1 and the residual r(w, t)
depend implicitly on the linearization point w∗

t0 . This dependence will be made clear from
the context, so we will not carry it in the notation. Some basic properties arising from the
definition of the inverse operator are as follows:

w∗
t0∈ψ

−1[r(w∗
t0 , t0)] = ψ−1[0], w∗

t∈ψ−1[r(w∗
t , t)].

Definition 3.1. (Strong Regularity [30]). It is said that the GE (3.1) is strongly regular
at w∗

t0 in the sense of Robinson if there exists a neighborhood VW ⊆ W of w∗
t0 and a neigh-

borhood VZ ⊆ Z of r(w∗
t0 , t0) = 0, such that for every r ∈ VZ , (3.12) has a unique solution
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w = ψ−1[r] ∈ VW , and the inverse mapping ψ−1 : VZ → VW is Lipschitz with constant Lψ.
That is, for any r1, r2 ∈ VZ ,

∥ψ−1[r1]− ψ−1[r2]∥ ≤ Lψ∥r1 − r2∥.

Establishing conditions for strong regularity consists of seeking properties of the derivative
matrix Fw(w

∗
t0 , t0) guaranteeing that ψ−1 becomes a single-valued function. To explain this,

we consider the case K = ℜn+. At a given solution w∗
t0 , system (3.12) will have three different

components,

(Mw∗
t0 + b)j = 0, (w∗

t0)j > 0, j = 1 : na, (3.14a)

(Mw∗
t0 + b)j = 0, (w∗

t0)j = 0, j = na + 1 : ns + na, (3.14b)

(Mw∗
t0 + b)j > 0, (w∗

t0)j = 0, j = ns + na + 1 : n, (3.14c)

where n = na + ns + ni, M := Fw(w
∗
t0 , t0), and b := F (w∗

t0 , t0) −Mw∗
t0 . By eliminating the

last ni inactive components from the system, M can be reduced to

M̂ =

[
M11 M12

M21 M22

]
, (3.15)

and (3.12) can be expressed in the reduced form

r ∈ M̂y + b̂+Nℜna×ℜns+
(y), (3.16)

where y ∈ ℜna+ns and b̂T = [bT1 bT2 ].

Proposition 3.2. (Theorem 3.1 in [30]). Consider the system (3.16) and the operator

ψ y := M̂y + b+Nℜna×ℜns+
(y).

Necessary and sufficient conditions for ψ−1 to be Lipschitzian are (i) M11 is nonsingular and
(ii) M22 −M21M

−1
11 M12 have positive principal minors.

In Section 5, we will interpret these conditions in the context of parametric NLO.

4. Bounds and Stability of Approximation Error. Using this basic set of tools,
we now establish results that will allow us to construct algorithms able to track the solution
manifold of (3.1) approximately.

Theorem 4.1. (Theorem 2.3 in [30] and Theorem 3.3.4 in [15]) Assume (3.1) is strongly
regular at w∗

t0 . Then, there exist neighborhoods VW and VT and a unique and Lipschitz con-
tinuous solution w∗

t ∈ VW of the GE (3.1) that satisfies, for each t = t0 +∆t ∈ VT ,

(i) ∥w∗
t − w∗

t0∥ ≤ Lw∆t (4.1)

with Lw > 0. In addition, consider that w̄t solves the truncated system,

δϵ ∈ F (w∗
t0 , t) + Fw(w

∗
t0 , t0)(w̄t − w

∗
t0) +NK(w̄t) (4.2)

where rϵ is the solution residual satisfying ∥rϵ∥ ≤ δϵ > 0. We have that w̄t satisfies

(ii) ∥w∗
t − w̄t∥ ≤ Lψ (δϵ + γ(∆t)∆t) ,
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with γ(∆t)→ 0 as ∆t→ 0 and, if Fw is Lipschitz continuous then,

(iii) ∥w∗
t − w̄t∥ ≤ Lψ

(
δϵ + κ∆t2

)
with κ > 0.

Proof. Result (i) follows from strong regularity (Def. 3.1) and Lipschitz continuity of
ψ−1. This can be established under a fixed-point argument for sufficiently small ∆t, as shown
in Theorem 2.1 in [30] and Theorem 5.13 in [7]. Result (ii) follows from strong regularity
(Def. 3.1), by noticing that the truncated system (4.2) is equivalent to (3.12) with with
r = rϵ + F (w∗

t0 , t0) − F (w
∗
t0 , t), and from the definition of the residual (3.11) for w∗

t . With
this, we have

∥w̄t − w∗
t ∥

≤ Lψ∥r − r(w∗
t , t)∥

≤ Lψ∥
(
rϵ + F (w∗

t0 , t0)− F (w
∗
t0 , t)

)
−
(
F (w∗

t0 , t0) + Fw(w
∗
t0 , t0)(w

∗
t − w∗

t0)− F (w
∗
t , t)

)
∥

≤ Lψ∥rϵ + Fw(w
∗
t0 , t0)(w

∗
t0 − w

∗
t ) + F (w∗

t , t)− F (w∗
t0 , t)∥.

From the mean value theorem we have

F (w∗
t , t)− F (w∗

t0 , t) =

∫ 1

0

Fw(w
∗
t0 + χ(w∗

t − w∗
t0), t)(w

∗
t − w∗

t0)dχ, (4.3)

so we obtain, after replacing (4.3) in the preceding inequality, that

∥w̄t − w∗
t ∥ ≤ δϵ + Lψ∥w∗

t − w∗
t0∥
∫ 1

0

∥∥Fw(w∗
t0 , t0)− Fw(w

∗
t0 + χ(w∗

t − w∗
t0), t)

∥∥ dχ
(i)

≤ Lψδϵ + LψLw∆t

∫ 1

0

∥∥Fw(w∗
t0 , t0)− Fw(w

∗
t0 + χ(w∗

t − w∗
t0), t)

∥∥ dχ
≤ Lψ (δϵ + γ(∆t)∆t) .

Result (iii) is a consequence of the Lipschitz continuity of Fw,

∥w∗
t − w̄t∥ ≤ Lψδϵ + LψLw∆t

∫ 1

0

∥∥Fw(w∗
t0 , t0)− Fw(w

∗
t0 + χ(w∗

t − w∗
t0), t)

∥∥ dχ
≤ Lψδϵ + LψLw∆t

∫ 1

0

LFw(χ
∥∥(w∗

t − w∗
t0)
∥∥+∆t)dχ

(i)

≤ Lψδϵ + LψLw∆tLFw

(
1

2
Lw∆t+∆t

)
≤ Lψδϵ + LψLwLFw

(
1

2
Lw + 1

)
∆t2.

The result follows with κ = LwLFw
(
1
2Lw + 1

)
.

Having a reference solution w∗
t0 , we can compute the approximate solution w̄t by solving

the LCP (3.9) or the QO (3.10) with r = F (w∗
t0 , t0)−F (w

∗
t0 , t). From Theorem 4.1, we see that

this approximation can be expected to be close to the optimal solution w∗
t even in the presence

of active-set changes. In our approximate algorithm, however, we relax the requirement that
w∗
t0 be available. Instead, we consider a linearization point w̄t0 located in the neighborhood
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of w∗
t0 . In addition, we assume that the LCP is not solved exactly. In other words, w̄t is the

solution of the truncated system,

rϵ ∈ F (w̄t0 , t) + Fw(w̄t0 , t0)(w − w̄t0) +NK(w), (4.4)

where rϵ ∈ ℜn is the solution residual. This system can be posed in form (3.12) using the
following definition:

r = rϵ + F (w∗
t0 , t0) + Fw(w

∗
t0 , t0)(w − w

∗
t0)− F (w̄t0 , t)− Fw(w̄t0 , t0)(w − w̄t0). (4.5)

Note that, in this case, the perturbation r is an implicit function of the solution w = w̄t. In
addition, we emphasize that (4.5) is used only as an analytical tool. This is needed in order
to use the strongly regular solution w∗

t0 as the reference point and thus use the approximation
results of Section 3. This is a key difference with the nonlinear equation case. In practice,
however, (4.4) is solved. In the following theorem we establish stability conditions for the
tracking error ∥w̄t − w∗

t ∥.

Theorem 4.2. (Stability of Tracking Error). Assume (3.1) is strongly regular at w∗
t0 .

Define w̄t as the solution of the perturbed LGE (4.4) where w̄t0 is a point in the neighborhood
VW of w∗

t0 . The associated residual r(w̄t0 , t0) is assumed to satisfy

∥r(w̄t0 , t0)− r(w∗
t0 , t0)∥ ≤ δr,

with δr > 0. Assume there exists δϵ > 0 such that ∥rϵ∥ ≤ δϵ. If there exists κ > 0 and if ∆t
satisfies

αGE1 ∆t δr ≤ κ∆t2 (4.6a)

(αGE2 + κ)∆t2 + δϵ ≤ αGE3 δr, (4.6b)

with αGE1 , αGE2 and αGE3 defined in Appendix A; then the tracking error remains stable:

∥w̄t0 − w∗
t0∥ ≤ Lψδr ⇒ ∥w̄t − w∗

t ∥ ≤ Lψδr.

Proof. To bound ∥w̄t −w∗
t ∥ we need to bound the distance between the associated residuals.

From (4.5) and (3.11) we have

r − r(w∗
t , t)

= rϵ + F (w∗
t0 , t0) + Fw(w

∗
t0 , t0)(w̄t − w

∗
t0)− F (w̄t0 , t)− Fw(w̄t0 , t0)(w̄t − w̄t0)

− F (w∗
t0 , t0)− Fw(w

∗
t0 , t0)(w

∗
t − w∗

t0) + F (w∗
t , t)

= rϵ + Fw(w
∗
t0 , t0)(w̄t − w

∗
t0)− F (w̄t0 , t)− Fw(w̄t0 , t0)(w̄t − w̄t0)

− Fw(w∗
t0 , t0)(w

∗
t − w∗

t0) + F (w∗
t , t)

= rϵ + F (w∗
t , t)− Fw(w∗

t0 , t0)(w
∗
t − w∗

t0)− F (w
∗
t0 , t)

+ F (w∗
t0 , t)− Fw(w̄t0 , t0)(w

∗
t0 − w̄t0)− F (w̄t0 , t)

+ Fw(w
∗
t0 , t0)(w̄t − w

∗
t + w∗

t − w∗
t0)− Fw(w̄t0 , t0)(w̄t − w

∗
t + w∗

t − w∗
t0).
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Bounding,

∥F (w∗
t , t)− Fw(w∗

t0 , t0)(w
∗
t − w∗

t0)− F (w
∗
t0 , t)∥

≤ Lw∆t
∫ 1

0

∥∥Fw(w∗
t0 + χ(w∗

t − w∗
t0), t)− Fw(w

∗
t0 , t0)

∥∥ dχ
≤ LwLFw

(
1

2
Lw + 1

)
∆t2

∥F (w∗
t0 , t)− Fw(w̄t0 , t0)(w

∗
t0 − w̄t0)− F (w̄t0 , t)∥

≤ ∥w∗
t0 − w̄t0∥

∫ 1

0

∥Fw
(
w̄t0 + χ(w∗

t0 − w̄t0), t
)
− Fw(w̄t0 , t0)∥dχ

≤ LFw
(
1

2
L2
ψδ

2
r + Lψδr∆t

)
.

We also have ∥rϵ∥ ≤ δϵ. The remaining terms can be bounded as follows:

∥Fw(w∗
t0 , t0)(w̄t − w

∗
t + w∗

t − w∗
t0)− Fw(w̄t0 , t0)(w̄t − w

∗
t + w∗

t − w∗
t0)∥

≤ LFw∥w∗
t0 − w̄t0∥(∥w̄t − w

∗
t ∥+ ∥w∗

t − w∗
t0∥)

≤ LFwLψδr∥w̄t − w∗
t ∥+ LFwLwLψδr∆t.

Merging terms, and moving all terms containing ∥w̄t − w∗
t ∥ to the left, we obtain

∥w̄t − w∗
t ∥ ≤ Lψ∥r − r(w∗

t , t)∥

≤ Lψδϵ + LψLwLFw

(
1

2
Lw + 1

)
∆t2 + LψLFw

(
1

2
L2
ψδ

2
r + Lψδr∆t

)
+ LψLFwLψδr∥w̄t − w∗

t ∥+ LψLFwLwLψδr∆t

=⇒
∥w̄t − w∗

t ∥

≤
Lψδϵ + LψLwLFw(

1
2Lw + 1)∆t2 + LψLFw(

1
2L

2
ψδ

2
r + Lψδr∆t) + LψLFwLwLψδr∆t

1− LFwL2
ψδr

.

To establish stability, we need to find conditions for ∆t such that ∥w̄t − w∗
t ∥ ≤ Lψδr. This

implies,

Lψδr ≥
Lψδϵ + LψLwLFw(

1
2Lw + 1)∆t2 + LψLFw(

1
2L

2
ψδ

2
r + Lψδr∆t) + LψLFwLwLψδr∆t

1− LFwL2
ψδr

.

Dividing through by Lψ, multipliying with the denominator, and simplifying we have

δr −
3

2
LFwL

2
ψδ

2
r ≥ δϵ + LwLFw

(
1

2
Lw + 1

)
∆t2 + LFwLψ (Lw + 1)∆tδr.

This condition is satisfied if (4.6a)-(4.6b) and 1− LFwL2
ψδr > 0 hold. The proof is complete.

Corollary 4.3. Assume conditions of Theorem 4.2 hold ∀ tk ∈ [t0, tf ]. Then,

∥w̄tk − w∗
tk
∥ ≤ Lψδr, tk+1 = tk + k ·∆t, ∀ k ≤ tf − t0

∆t
.
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Discussion of Theorem 4.2. From Theorem 4.2, a condition for (4.6a)-(4.6b) to hold
is that

∥r(w̄tk , tk)− r(w∗
tk
, tk)∥ = ∥F (w∗

tk
, tk) + F (w∗

tk
, tk)(w̄tk − w∗

tk
)− F (w̄tk , tk)∥ ≤ δr, (4.7)

where r(w∗
tk
, tk) = 0. This condition gives a guideline for monitoring the progress of the

algorithm. Condition (4.6a) can be satisfied for δr = o(∆t), O(∆t2). Condition (4.6b) is
stricter. If δr = o(∆t), this condition states that the solution error should be at least δϵ =
o(∆t). The first term on the left-hand side represents the tracking error of w̄t if w

∗
t0 is used

as linearization point. If we choose δr = O(∆t2) at the initial point, and δϵ = O(∆t2) at all
subsequent iterations, there will exist κ such that for all ∆t sufficiently small the tracking
error is O(∆t2) as stated in Theorem 4.1. Note that a small Lψ is beneficial because it relaxes
both (4.6a) and (4.6b). As seen in Theorem 3.2, this Lipschitz constant can be related to the
conditioning of the derivative matrix Fw.

We also note that the technique of proof for Theorem 4.2 is similar to the one concerning
the geometrical infeasibility of a time-stepping method [1] for differential variational inequal-
ities (DVI) [28]. Indeed, one can prove that the parameteric solution w∗

t satisfies a DVI.
Nevertheless, the fact that the problem has no dynamics makes it easy to solve directly rather
than casting it as a DVI.

5. On-Line nonlinear optimization. If we linearize the optimality conditions around
a given solution w∗

t0 we get,

0 ∈

 Hxx(w
∗
t0 , t0) JTx (x

∗
t0 , t0) −In

Jx(x
∗
t0 , t0)
In

 ∆x
∆λ
∆ν

+ (5.1)

 ∇xL(w∗
t0 , t0)− ν

∗
t0

c(x∗t0 , t0)
x∗t0

+

 Nℜn(x)
Nℜm(λ)
Nℜn+(ν)

 .
Here, ∆x := x − x∗t0 , ∆λ := λ − λ∗t0 , ∆ν := ν − ν∗t0 , Jx(x

∗
t0 , t0) := ∇xc(x∗t0 , t0), and

Hxx(w
∗
t0 , t0) := ∇xxL(w∗

t0 , t0). As shown in Section 3, to establish conditions for strong
regularity, we eliminate the ni components corresponding to the pair (x∗t0)j > 0, (ν∗t0)j = 0.
This gives a reduced matrix of the form

[
K(w∗

t0 , t0) −E
ET

]
=


Hxx(w

∗
t0 , t0) JTx (x

∗
t0 , t0) −Ina −Ins

Jx(x
∗
t0 , t0)

Ina
Ins

 , (5.2)

where E = [Ins | 0 | 0].

Theorem 5.1. (Strong Regularity of NLO - Theorem 4.1 in [30] and Theorem 6 in [13]).
Let f(x, ·) and c(x, ·) be functions from the open set Ω ∈ ℜn into ℜ,ℜm that are at least twice
differentiable at a point x∗t0 ∈ Ω. Suppose that w∗

t0 solves (2.5). If and only if, (i) for every
nonzero vector w ∈ ℜn satisfying Jx(x

∗
t0 , t0)w = 0, Inaw = 0, one has wTHxx(w

∗
t0 , t0)w > 0,

and (ii) [JTx (x
∗
t0 , t0) | Ina | Ins ] is full rank, then (5.1) is strongly regular at this point.

The conditions of Theorem 5.1 are the strong second-order conditions and the linear in-
dependence constraint qualification (LICQ) (Chapter 12 in [24]). As seen in Section 3, strong



12 V. M. ZAVALA AND M. ANITESCU

regularity guarantees that there exist nonempty neighborhoods where the solution of the lin-
earized GE is a Lipschitz continuous function of the data. A similar result has been obtained
in [16] without resorting to GE results. In [31] it is shown that by weakening LICQ to the
Mangasarian-Fromovitz constraint qualification (MFCQ), the Lipschitz continuity properties
of the solution are lost (see discussion after Corollary 4.3 in [31]). The reason is that LICQ
guarantees that the multifunction (2.5) becomes a single-valued function on a neighborhood
of the solution (i.e., the multipliers are unique). Nevertheless, boundedness results still hold
under MFCQ. We emphasize that strict complementarity slackness is not necessary to guar-
antee strong regularity. This property is crucial since, as t varies and the active-set change,
points at which complementarity slackness does not hold will be encountered.

Consider the perturbed QO problem formed at w̄Tt0 = [x̄Tt0 , λ̄
T
t0 ] in the neighborhood of

w∗
t0 ,

min
∆x≥−x̄t0

∇xf(x̄t0 , t)T∆x+
1

2
∆xTHxx(w̄t0 , t0)∆x (5.3a)

s.t. c(x̄t0 , t) + Jx(x̄t0 , t0)∆x = 0, (5.3b)

where ∆x = x− x̄t0 . Note the perturbation on the data t0 ← t in the equality constraints and
in the gradient of the objective function. The solution of this problem is given by the step
∆w̄t toward w

∗
t . The optimality conditions of this QO formulate an LGE of the form (4.4).

Therefore, the results of Theorem 4.2 apply directly.

6. Augmented Lagrangian Strategy. The approximation results of the previous sec-
tions can be used to derive algorithms to track of the solution manifold of the NLO (2.1). For
instance, as we have seen, solving a single QO (5.3) at each time step is sufficient. This prop-
erty has been used in the context of model predictive control to derive fast solution algorithms
[9, 26]. In our context, however, we assume that the QOs are large-scale and may contain
many degrees of freedom and bounds. Therefore, it is crucial to have a fast solution strategy
for the QO itself in order to keep ∆t as small as possible. Here, we propose to reformulate the
NLO using an augmented Lagrangian function and solve the underlying QO using a PSOR
strategy. The justification of this approach is provided at the end of this section. To derive
our strategy, we define the augmented Lagrangian function,

LA(x, λ̄, t, ρ) = f(x, t) + λ̄T c(x, t) +
ρ

2
∥c(x, t)∥2. (6.1)

A strategy to solve the original NLO (2.1) consists of computing solutions of the augmented
Lagrangian subproblem

min
x≥0

LA(x, λ̄, t, ρ) (6.2)

for a sequence of increasing ρ. In the following, we assume that the penalty parameter ρ is
not updated but remains fixed to a sufficiently large value. Consequently, we drop from the
notation any dependencies on this parameter. Note that the multipliers λ̄ act as parameters of
the augmented Lagrangian subproblem. The solution of the subproblem is defined as x∗(λ̄, t).
The multipliers can be updated externally as

λ̄← λ̄+ ρ c(x∗(λ̄, t), t). (6.3)

We thus define the solution pair x∗(λ̄, t), Λ∗(λ̄, t) = λ̄+ ρ c(x∗(λ̄, t), t). The first-order condi-
tions of (6.2) can be posed as a GE of the form

0 ∈ ∇xLA(x, λ̄, t) +Nℜn+(x), (6.4)
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where

∇xLA(x, λ̄, t) = ∇xf(x, t) + (λ̄+ ρ c(x, t))T∇xc(x, t).

The linearized version of (6.4) defined at the NLO solution x∗t0 , λ̄ = λ∗t0 is given by

r ∈ ∇xLA(x∗t0 , λ
∗
t0 , t0) +∇xxLA(x

∗
t0 , λ

∗
t0 , t0)(x− x

∗
t0) +Nℜn+(x) (6.5)

for r = 0. To establish perturbation results for the augmented Lagrangian LGE in connection
with those of the original NLO (2.1), we consider the following equivalent formulation of (6.4),
proposed in [5]:

0 ∈ F (w, p(λ̄), t) +Nℜn+×ℜm(w), (6.6)

where

F (w, p(λ̄), t) =

[
∇xf(x, t) + ΛT∇xc(x, t)
c(x, t) + p(λ̄) + 1

ρ (λ
∗
t0 − Λ)

]
, (6.7)

wT = [xT ΛT ], and

p(λ̄) =
1

ρ
(λ̄− λ∗t0). (6.8)

For t = t0 and λ̄ = λ∗t0 , we have p(λ̄) = 0, x∗(p(λ̄), t) = x∗t0 , and Λ∗(p(λ̄), t) = λ∗t0 . The
solution of GE (6.6) is denoted as w∗(p(λ̄), t). The linearized version of (6.6) at w∗

t0 is

r ∈ F (w∗
t0 , 0, t0) + Fw(w

∗
t0 , 0, t0)(w − w

∗
t0) +Nℜn+×ℜm(w), (6.9)

where

Fw(w
∗
t0 , 0, t0) =

[
∇xxL(w∗

t0 , t0) ∇xc(x∗t0 , t0)
∇Tx c(x∗t0 , t0) − 1

ρ Im

]
. (6.10)

After applying the reduction procedure of Section 3 to the derivative matrix (6.10) we can
show that, for sufficiently large ρ, the reduced matrix satisfies conditions of Theorem 3.2 at
a strongly regular solution w∗

t0 . The proof of this assertion is long and will be omitted here.
It follows along the lines of the results of Section 5 and uses the results of Proposition 2.4 in
[5]. In particular, one needs to show that the negative diagonal matrix in the bottom right-
hand corner of (6.10) does not affect significantly the conditioning of the derivative matrix
for sufficiently large ρ. Because of the equivalence between (6.4) and (6.6), the same can be
argued for the Hessian matrix ∇xxLA(x∗t0 , λ

∗
t0 , t0). We emphasize that the reformulation (6.6)

is considered only for theoretical purposes. In practice, (6.4) is solved.

We now establish the following approximation results in the context of the augmented
Lagrangian framework.

Lemma 6.1. Assume (6.4) is strongly regular at w∗
t0 . Then, there exist neighborhoods

VW ,VT , and Vp where the solution of the augmented Lagrangian subproblem (6.2) satisfies, for
each t = t0 +∆t ∈ VT , p(λ̄) ∈ Vp,

(i) ∥w∗(λ̄, t)− w∗
t0∥ ≤

Lw
ρ
∥λ̄− λ∗t0∥+ Lw∆t. (6.11)
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Furthermore, consider the approximate solution x̄(λ̄, t) obtained from the perturbed LGE (6.5)
with

r = ∇xLA(x∗t0 , λ
∗
t0 , t0)−∇xLA(x

∗
t0 , λ̄, t), (6.12)

and associated multiplier Λ̄(λ̄, t) = λ̄+ ρ c(x̄(λ̄, t), t). The pair, denoted by w̄(λ̄, t), satisfies

(ii) ∥w̄(λ̄, t)− w∗(λ̄, t)∥ = O

((
∆t+

1

ρ
∥λ̄− λ∗t0∥

)2
)
. (6.13)

Proof. The result follows from the equivalence between (6.4) and (6.6), by recalling that
p(λ∗t0) = 0, p(λ̄) = 1

ρ∥λ̄− λ
∗
t0∥, and by applying Theorem 4.1.

This result states that the solution of a perturbed augmented Lagrangian LGE formed at
w∗
t0 provides a second-order approximation of the subproblem solution w∗(λ̄, t). The impact

of the multiplier error can be made arbitrarily small by fixing ρ to a sufficiently large value.
Stability of the tracking error is established in the following theorem. Here, we relax the
requirement of the availability of w∗

t0 . In addition, we establish conditions for the step size
∆t and the penalty parameter ρ guaranteeing that, by solving a single augmented Lagrangian
LGE per time step, the tracking error remains stable.

Theorem 6.2. (Stability of Tracking Error for Augmented Lagrangian). Assume w∗
t0 is

a strongly regular solution of (6.5). Define x̄(λ̄, t) as the solution of the LGE,

rϵ ∈ ∇xLA(x̄t0 , λ̄, t) +∇xxLA(x̄t0 , λ̄, t0)(x− x̄t0) +Nℜn+(x), (6.14)

with associated multiplier update Λ̄(λ̄, t) = λ̄ + ρ c(x̄(λ̄, t), t). The pair is denoted by w̄(λ̄, t).
The reference linearization point w̄Tt0 = [x̄Tt0 , Λ̄

T
t0 ] with Λ̄t0 = λ̄ + ρ c(x̄t0 , t0) is assumed to

exist in the neighborhood VW of w∗
t0 . The associated residual r(w̄t0 , t0) is assumed to satisfy

∥r(w̄t0 , t0) − r(w∗
t0 , t0)∥ ≤ δr with δr > 0. Furthermore, assume there exists δϵ > 0 such that

∥rϵ∥ ≤ δϵ. If there exists κ > 0, ∆t and ρ satisfying

αAL1 ∆tδr +
Lw
ρ

(
δr +

Lw
Lψ

∆t

)
≤ κ

(
∆t+

Lψδr
ρ

)2

(6.15a)

αAL2

(
∆t+

Lψδr
ρ

)2

+ δϵ ≤ αAL3 δr, (6.15b)

where αAL1 , αAL2 , αAL3 are defined in Appendix A; then the tracking error remains stable:

∥w̄t0 − w∗
t0∥ ≤ Lψδr ⇒ ∥w̄(λ̄, t)− w∗

t ∥ ≤ Lψδr.

Proof. Using the equivalence between (6.4) and (6.6), we have w̄(λ̄, t) = w̄(p(λ̄), t). Conse-
quently, we need to bound

∥w̄(p(λ̄), t)− w∗
t ∥ = ∥w̄(p(λ̄), t)− w∗(p(λ̄), t) + w∗(p(λ̄), t)− w∗

t ∥
≤ ∥w̄(p(λ̄), t)− w∗(p(λ̄), t)∥+ ∥w∗(p(λ̄), t)− w∗

t ∥. (6.16)

The second term, the distance between the solution of the augmented Lagrangian subprob-
lem w∗(p(λ̄), t) and the NLO solution w∗

t , can be bounded by using the Lipschitz continuity
property,

∥w∗(p(λ̄), t)− w∗
t ∥ = ∥w∗(p(λ̄), t)− w∗(p(λ∗t ), t)∥
≤ Lw∥p(λ̄)− p(λ∗t )∥
≤ Lw∥p(λ̄)∥+ Lw∥p(λ∗t )∥. (6.17)
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The distance between w∗(p(λ̄), t) and the approximate solution of the LGE (6.14) follows from
the definition of strong regularity.

∥w̄(p(λ̄), t)− w∗(p(λ̄), t)∥ ≤ Lψ∥r − r(w∗(p(λ̄), t), t)∥.

From the equivalence between (6.4) and (6.6) we have that solving (6.14) is equivalent to
solving

rϵ ∈ F (w̄t0 , p(λ̄), t) + Fw(w̄t0 , p(λ̄), t0)(w − w̄t0) +Nℜn+×ℜm(w).

Consequently, the perturbation r associated to w̄(p(λ̄), t) is given by

r = rϵ + F (w∗
t0 , 0, t0) + Fw(w

∗
t0 , 0, t0)(w − w

∗
t0)− F (w̄t0 , p(λ̄), t)

− Fw(w̄t0 , p(λ̄), t0)(w − w̄t0),

with w = w̄(p(λ̄), t). The residual r(w∗(p(λ̄), t), t) is obtained from (3.11). We proceed by
parts. First we have

A = r − r(w∗(p(λ̄), t))

= rϵ + F (w∗
t0 , 0, t0) + Fw(w

∗
t0 , 0, t0)(w̄(p(λ̄), t)− w

∗
t0)

− F (w̄t0 , p(λ̄), t)− Fw(w̄t0 , p(λ̄), t0)(w̄(p(λ̄), t)− w̄t0)
− F (w∗

t0 , 0, t0)− Fw(w
∗
t0 , 0, t0)(w

∗(p(λ̄), t)− w∗
t0) + F (w∗(p(λ̄), t), p(λ̄), t)

= rϵ + F (w∗(p(λ̄), t), p(λ̄), t)− Fw(w∗
t0 , 0, t0)(w

∗(p(λ̄), t)− w∗
t0)− F (w

∗
t0 , p(λ̄), t)

+ F (w∗
t0 , p(λ̄), t)− Fw(w̄t0 , p(λ̄), t0)(w

∗
t0 − w̄t0)− F (w̄t0 , p(λ̄), t)

+ Fw(w
∗
t0 , 0, t0)(w̄(p(λ̄), t)− w

∗
t + w∗

t − w∗
t0)

− Fw(w̄t0 , p(λ̄), t0)(w̄(p(λ̄), t)− w∗
t + w∗

t − w∗
t0).

We use the mean value theorem,

F (w∗(p(λ̄), t), p(λ̄), t)− F (w∗
t0 , p(λ̄), t)

=

∫ 1

0

Fw(w
∗
t0 + χ(w∗(p(λ̄), t)− w∗

t0), p(λ̄), t)(w
∗(p(λ̄), t)− w∗

t0)dχ,

to compute the following bound:

B = ∥F (w∗(p(λ̄), t), p(λ̄), t)− Fw(w∗
t0 , 0, t0)(w

∗(p(λ̄), t)− w∗
t0)− F (w

∗
t0 , p(λ̄), t)∥

≤
∫ 1

0

∥∥(Fw(w∗
t0 + χ(w∗(p(λ̄), t)− w∗

t0), p(λ̄), t)− Fw(w
∗
t0 , 0, t0)

)
(w∗(p(λ̄), t)− w∗

t0)
∥∥ dχ

≤ 1

2
LFwL

2
w

(
∥p(λ̄)∥+∆t

)2
+ LFwLw

(
∥p(λ̄)∥+∆t

)
(∥p(λ̄)∥+∆t)

≤ LwLFw
(
1

2
Lw + 1

)(
∆t+ ∥p(λ̄)∥

)2
.

Similarly,

C = ∥F (w∗
t0 , p(λ̄), t)− Fw(w̄t0 , p(λ̄), t0)(w

∗
t0 − w̄t0)− F (w̄t0 , p(λ̄), t)∥

≤ 1

2
LFw∥w̄t0 − w∗

t0∥
2 + LFw∥w̄t0 − w∗

t0∥∆t

≤ 1

2
LFwL

2
ψδ

2
r + LFwLψδr∆t.
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The remaining terms can be bounded as

D = ∥Fw(w∗
t0 , 0, t0)(w̄(p(λ̄), t)− w

∗
t + w∗

t − w∗
t0)

− Fw(w̄t0 , p(λ̄), t0)(w̄(p(λ̄), t)− w∗
t + w∗

t − w∗
t0)∥

≤ ∥Fw(w∗
t0 , 0, t0)− Fw(w̄t0 , p(λ̄), t0)∥∥w̄(p(λ̄), t)− w

∗
t + w∗

t − w∗
t0∥

≤ LFw
(
∥w∗

t0 − w̄t0∥+ ∥p(λ̄)∥
) (
∥w̄(p(λ̄), t)− w∗

t ∥+ ∥w∗
t − w∗

t0∥
)

≤ LFw
(
Lψδr + ∥p(λ̄)∥

) (
∥w̄(p(λ̄), t)− w∗

t ∥+ Lw∆t
)
.

Using ∥rϵ∥ ≤ δϵ and merging terms B, C, and D into A, we obtain

∥w̄(p(λ̄), t)− w∗(p(λ̄), t)∥ ≤ Lψδϵ + LψLwLFw

(
1

2
Lw + 1

)(
∆t+ ∥p(λ̄)∥

)2
+ Lψ

1

2
LFwL

2
ψδ

2
r + LψLFwLψδr∆t

+ LψLFw
(
Lψδr + Lψ∥p(λ̄)∥

) (
∥w̄(p(λ̄), t)− w∗

t ∥+ Lw∆t
)
.

(6.18)

We substitute (6.17) and (6.18) in (6.16) and apply,

∥p(λ̄)∥ ≤ 1

ρ
∥λ̄− λ∗t0∥ ≤

Lψ
ρ
∥r(w̄t0 , t0)− r(w∗

t0 , t0)∥ ≤
Lψ
ρ
δr

∥p(λ∗t )∥ ≤
1

ρ
∥λ∗t − λ∗t0∥ ≤

Lw
ρ

∆t (6.19)

to obtain

∥w̄(p(λ̄), t)− w∗
t ∥

≤ Lψδϵ + LψLwLFw

(
1

2
Lw + 1

)(
∆t+ ∥p(λ̄)∥

)2
+ Lψ

1

2
LFwL

2
ψδ

2
r + LψLFwLψδr∆t

+ LψLFw
(
Lψδr + Lψ∥p(λ̄)∥

) (
∥w̄(p(λ̄), t)− w∗

t ∥+ Lw∆t
)

+ Lw∥p(λ̄)∥+ Lw∥p(λ∗t )∥

≤ Lψδϵ + LψLwLFw

(
1

2
Lw + 1

)(
∆t+

Lψδr
ρ

)2

+
1

2
LψLFwL

2
ψδ

2
r + LψLFwLψδr∆t

+ LFwL
2
ψδr

(
1 +

Lψ
ρ

)(
∥w̄(p(λ̄), t)− w∗

t ∥+ Lw∆t
)

+ Lw
Lψδr
ρ

+ L2
w

∆t

ρ
.

For stability we require ∥w̄(p(λ̄), t)− w∗
t ∥ ≤ Lψδr. This implies

Lψδr ≥
Lψδϵ +

Lw
ρ

(
L2
ψδr + Lw∆t

)
+ LψLwLFw

(
1
2Lw + 1

) (
∆t+

Lψδr
ρ

)2
1− LFwL2

ψδr

(
1 +

Lψ
ρ

)
+
LψLFw(

1
2L

2
ψδ

2
r + Lψδr∆t) + LFwL

2
ψδr

(
1 +

Lψ
ρ

)
Lw∆t

1− LFwL2
ψδr

(
1 +

Lψ
ρ

) .
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Dividing through by Lψ and rearranging we have,

δr − LFwL2
ψδ

2
r

(
1 +

Lψ
ρ

)
≥ δϵ +

Lw
ρ

(
δr +

Lw
Lψ

∆t

)
+ LwLFw

(
1

2
Lw + 1

)(
∆t+

Lψδr
ρ

)2

+ LFw(
1

2
L2
ψδ

2
r + Lψδr∆t) + LFwLψLwδr

(
1 +

Lψ
ρ

)
∆t

δr −
(
3

2
+
Lψ
ρ

)
LFwL

2
ψδ

2
r

≥ δϵ + LwLFw

(
1

2
Lw + 1

)(
∆t+

Lψδr
ρ

)2

+ LFwLψ

(
Lw

(
1 +

Lψ
ρ

)
+ 1

)
δr∆t+

Lw
ρ

(
δr +

Lw
Lψ

∆t

)
.

This last condition is satisfied if (6.15a)-(6.15b) and 1 − LFwL2
Ψδr

(
1 + LΨ

ρ

)
> 0 hold. The

proof is complete.

Discussion of Theorem 6.2. The recursive stability result of Corollary 4.3 also applies
in this context. Note that, if ρ → ∞, conditions (6.15a)-(6.15b) reduce to (4.6a)-(4.6b).
Therefore, similar order results to those of Theorem 4.2 can be expected for sufficiently large
ρ. In particular, (6.15a) reduces to δr ≤ κ

LFwLψ(1+Lw) which can give a condition for δr.

The initial multiplier error (bounded by δr) always appears divided by ρ. This indicates that
relatively large initial multiplier errors can be tolerated by increasing ρ. Nevertheless, note
that the second term on the left hand side of (6.15a) remains o(∆t) even if δr = O(∆t2). In
other words, this condition is more restrictive than (4.6a). This difficulty is related to the fact
that the multiplier update is only first-order [5].

As a final remark, we point out that the stability conditions can be satisfied for fixed and
sufficiently large κ as long as ρ = O

(
1
∆t

)
and δr = O(∆t2). This has the side effect of having

ρ effectively as a penalty parameter, a situation that resembles the use of a smoothing barrier
function for inequalities and that may raise stability problems. While both penalizations arise
in different contexts, an important question is whether the augmented Lagrangian penalization
is more stable than that obtained by using smoothing penalty functions. In our scheme, the
penalty parameter is finite for every fixed ∆t, and the scheme is guaranteed to be stable.
Stability results for continuation schemes incorporating smoothing functions are currently
lacking. A simple numerical comparison will be presented in the next section.

In order to solve the QO associated to the LGE (6.14), we follow a PSOR approach. The
QO has the form,

min
z≥α

1

2
zTMz + bT z. (6.20)

Any solution of this QO solves the LCP,

Mz + b ≥ 0, z − α ≥ 0, (z − α)T (Mz + b) = 0. (6.21)

Consider the following PSOR algorithm adapted from [20, 22]:
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PSOR Algorithm.
Given z0 ≥ α, compute for k = 0, 1, ..., niter,

zk+1
i = (1− ω)zki −

ω

Mii

∑
j<i

Mijz
k+1
j +

∑
j>i

Mijz
k
j − bi


zk+1
i = max

(
zk+1
i , αi

)
, i = 1, ..., n, (6.22)

where ω ∈ (0, 2) is the relaxation factor.

Theorem 6.3. (Theorem 2.1 in [22]). Let M be symmetric positive definite. Then, each
accumulation point of the sequence {zk} generated by (6.22) converges to a solution of the
LCP (3.9). The rate of convergence is R-linear.

Estimating the contraction rate for PSOR is difficult as it depends on the optimal choice
of ω which is problem-dependent. However, it is known that, for the SOR method for linear
systems, in order to reduce the error by a factor of 1/10, SOR with non-optimal parameter ω
requires O(n) iterations, while with optimal ω only O(n0.5) iterations are needed [20]. Here,
n = dim(z). A suitable measure of progress of the PSOR algorithm is the projected gradient
(or residual) PK (M z + b), where K := {z | z ≥ α} and

(PK(g))j =

{
min {0, gj} if zj = αj
gj if zj > αj .

This is based on the fact that a solution of (6.20) satisfies PK (M z + b) = 0. Similarly, the
progress of the algorithm can be monitored by using the projected gradient of the augmented
Lagrangian function Pℜn+

(
∇xLA(x̄tk , λ̄tk , tk, ρ)

)
. This is a more direct convergence check of

(3.1), as opposed to (4.7). The computational complexity of PSOR is at most O(n2). We can
now establish our tracking algorithm (2.1), which we refer to as AugLag:

AugLag Tracking Algorithm.
Given x̄t0 , λ̄t0 , ∆t, ρ, niter,

1. Evaluate ∇xLA(x̄tk , λ̄tk , tk+1, ρ) and ∇xxLA(x̄tk , λ̄tk , tk, ρ).
2. Compute step ∆x̄tk+1

by applying niter PSOR iterations to (6.20) with:

M = ∇xxLA(x̄tk , λ̄tk , tk, ρ), b = ∇xLA(x̄tk , λ̄tk , tk+1, ρ)

3. Update variables x̄tk+1
= x̄tk +∆x̄tk+1

and λ̄tk+1
= λ̄tk + ρ c(x̄tk+1

, tk+1).
4. Set k ← k + 1.

Justification of Augmented Lagrangian Framework. If the QO (5.3) is sparse, full-
space active-set and interior-point solvers are the most efficient alternatives [4, 36]. In on-line
applications, active-set strategies have been preferred because warm-start information can be
used efficiently, as opposed to interior-point methods. However, the time per iteration in an
interior-point solver tends to be smaller because the structure of the Karush-Kuhn-Tucker
matrix is fixed and, consequently, symbolic factorizations need to be applied only once. In
most active-set and interior-point implementations direct indefinite linear solvers are used to
compute the search step. The accuracy of these steps is high. However, the computational
overhead of a single factorization can be very high as well. As an alternative, one could
consider the use of iterative linear solvers such as QMR, GMRES, or PCG in an interior-point
framework [8]. A problem with this approach is that multiple linear systems still need to
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be solved because of the barrier parameter update. This situation can be avoided by fixing
the barrier parameter. However, as we will see in the next section, this approach is not very
robust. Based on these observations, we argue that the AugLag strategy is attractive because:
(i) the iteration matrix (Hessian of the augmented Lagrangian) remains at least positive semi-
definite close to the solution manifold [5, 24], (ii) it performs linear algebra and active-set
identification tasks simultaneously, (iii) it can exploit warm-start information, and (iv) it has
a favorable computational complexity. We emphasize that achieving a high accuracy with
PSOR might require a very large number of iterations. As demonstrated by Theorem 6.2,
however, this does not represent an important limitation in an on-line setting.

7. Numerical Example. To illustrate the developments, we consider the model predic-
tive control of a nonlinear CSTR [17]. The optimal control formulation is given by

min
u(τ)

∫ t+T

t

(
wT (zT − zspT )2 + wC(zC − zspC )2 + wu(u− usp)2

)
dτ

s.t.
dzC
dτ

=
zC − 1

θ
+ k0 · zC · exp

[
−Ea
zT

]
, zC(0) = z̃C(t)

dzT
dτ

=
zT − zfT

θ
− k0 · zC · exp

[
−Ea
zT

]
+ α · u · (zT − zcwT ), zT (0) = z̃T (t)

zminC ≤ zC ≤ zmaxC , zminT ≤ zT ≤ zmaxT , umin ≤ u ≤ umax.

The system involves two states, z(τ) = [zC(τ), zT (τ)], corresponding to dimensionless concen-
tration and temperature, and one control, u(τ), corresponding to the cooling water flow rate.

The model parameters are zcwT = 0.38, zfT = 0.395, Ea = 5, α = 1.95× 104, θ = 20, k0 = 300,
wC = 1×106, wT = 1×103, and wu = 1×10−3. The bounds are set to zminC = 0, zmaxC = 0.5,
zminT = 0.5, zmaxT = 1.0, umin = 0.25, and umax = 0.45. The set-points are denoted by the
superscript sp. The model time dimension is denoted by τ , and the real time dimension is
denoted by t. Accordingly, the moving horizon is defined as τ ∈ [t, t+T ]. For implementation,
the optimal control problem is converted into an NLO of the form in (2.1) by applying an
implicit Euler discretization scheme with N = 100 grid points and ∆τ = 0.25. The NLO is
parametric in the initial conditions, which are implicit functions of t. The initial conditions
are denoted by z̃T (t) and z̃C(t). Note that these states do not match the states predicted by
the model (due to the use of a different discretization mesh). To apply the AugLag tracking
algorithm, we define a simulation horizon t ∈ [t0, tf ] which is divided into Ns points with
states z(tk), k = 0, ..., Ns and ∆t = tk+1 − tk. We set the augmented Lagrangian penalty pa-
rameter to ρ = 100. To solve the augmented Lagrangian QO at each step, we fix the number of
PSOR iterations to 25. To illustrate the effectiveness of handling non smoothness effects with
projection, we compare the performance AugLag with two continuation algorithms incorpo-
rating different smoothing barrier functions. The first algorithm (Log Barrier) eliminates the
equality constraints with an augemented Lagrangian penalty and smooths out the inequality
constraints by using terms of the form µ·log(x−xmin)+µ·log(xmax−x), µ = 1.0 [34, 33]. The
second algorithm (Sqrt Barrier) also used an augmented Lagrangian penalty but incorporates
smoothing terms of the form µ · sqrt(x − xmin) + µ · sqrt(xmax − x), µ = 100 [26, 11]. To
prevent indefiniteness of the barrier functions near the boundaries of the feasible region, we
incorporate a fraction to the boundary rule of the form,

x = min(max(x, xmin + ϵ), xmax − ϵ), ϵ = 1× 10−3.

We initialize the three algorithms by perturbing an initial solution w∗
t0 as w̄t0 ← w∗

t0 · δw
where δw > 0 is a perturbation parameter. This perturbation generates the initial residual
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Fig. 7.1. Residual trajectories for Barrier and AugLag continuation algorithms with δw = 1.25.
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Fig. 7.2. Residual trajectories for AugLag with increasing ∆t.

r(w̄t0 , t0) . An additional perturbation, in the form of a set-point change, is introduced at
tk = 50. The residuals along the manifold r(w̄tk , tk) are computed from (4.7). Log Barrier
destabilizes at δw = 1.20 while Sqrt Barrier destabilizes at δw = 1.25. The errors accumulate
and grow to O(1010). The magnitude of the errors is due to the large magnitude of the La-
grange multipliers. AugLag remains stable in both cases, tolerating perturbations as large as
δw = 5.0. In Figure 7.1, we present the norm of the residuals along the simulation horizon
with ∆t = 0.025 and for an initial perturbation of δw = 1.25. As can be seen, even if the
initial residual is large, O(102), AugLag remains stable. In addition, the use of smoothing
functions introduces numerical instability. We now illustrate the effect of ∆t on the residual
of AugLag. Here, the initial residual is generated by using δw = 5.0 and can go as high as
O(103). In Figure 7.2, note that the residual levels remain stable, implying that δr is at least
O(103). The set-point change generates a residual that is only O(100) and can be tolerated
with no problems. The PSOR residuals rϵ at the beginning of the horizon and at tk = 50
are O(10−1) and go down to O(10−6) when the system reaches the set-points. In Figure 7.3,
we present control and temperature profiles for ∆t = 0.25 and ∆t = 0.01. As expected, the
tracking error decreases with the step size. We note that the PSOR strategy does a good
job at identifying the active-set changes in subsequent steps. At a single step, up to 100
changes were observed. For the larger step size, note that even if the active-sets do not match,
the residuals remain bounded and the system eventually converges to the optimal trajectories.

In our numerical experiments, the smoothing algorithms are able to tolerate relatively
large initial perturbations, maintaining the residuals stable along the entire time horizon.
However, the stability thresholds of smoothing approaches are smaller than that of the aug-
mented Lagrangian approach with PSOR. The fixed logarithmic barrier function has been
used in the model predictive control literature by Heath [34] and Boyd [33]. The problem
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Fig. 7.3. AugLag and optimal trajectories for the control (top) and temperature (bottom).

with fixing the logarithmic barrier function is that, if an active-set change occurs, the Newton
steps will tend to take the iterates outside of the feasible region (See Chapter 3 in [35]). In
addition, the approximation of the logarithmic barrier function becomes poor, introducing
large numerical errors. The results presented in [33] do not involve active-set changes while
the results presented in [34] solve the NLO to optimality. This explains the good performance
observed in those reports. The smoothing approach using squared root penalties is a variant
of the original quadratic slacks relaxation approach discussed in [5, 26, 10]. In our numer-
ical experiments we have observed that adding the squared root penalties directly into the
objective (as opposed to relaxing the bounds with quadratic slacks [11]) gives much better
performance. This is attributed to the fact that the first-order multiplier update is not efficient
for the additional equality constraints.

8. Conclusions and Future Work. We have presented a framework for the analysis of
parametric nonlinear optimization (NLO) problems based on generalized equation concepts.
The framework allows us to derive approximate algorithms for on-line NLO. We demonstrate
that if points along a solution manifold are consistently strongly regular, it is possible to
track the manifold approximately by solving a single linear complementarity problem (LCP)
per time step. We established sufficient conditions that guarantee that the tracking error
remains bounded to second order with the size of the time step, even if the LCP is solved
only to first-order accuracy. We present a tracking algorithm based on an augmented La-
grangian reformulation and a projected successive overrelaxation strategy to solve the LCPs.
We demonstrate that the algorithm is able to identify multiple active-set changes and reduce
the tracking errors efficiently. As part of our future work, we will establish a more rigorous
comparison between the stability properties of the augmented Lagrangian penalization and of
smoothing approaches. In addition, we are interested in exploring a strategy able to adapt
the number of PSOR iterations (and thus the step size) along the manifold by monitoring the
generalized equation residuals.
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Appendix A. Constants.

αNLE1 = LFwκψ(Lw + 1) (A.1a)

αNLE2 = LwLFwκψ

(
1

2
Lw + 1

)
(A.1b)

αNLE3 = 1− 1

2
LFwκψκr (A.1c)

αGE1 = LFwLψ (Lw + 1) (A.1d)

αGE2 = LwLFw

(
1

2
Lw + 1

)
+ κ (A.1e)

αGE3 = 1− 3

2
LFwL

2
ψδr (A.1f)

αAL1 = LFwLψ

(
Lw

(
1 +

Lψ
ρ

)
+ 1

)
(A.1g)

αAL2 = LwLFw

(
1

2
Lw + 1

)
+ κ (A.1h)

αAL3 = 1−
(
3

2
+
Lψ
ρ

)
LFwL

2
ψδr (A.1i)
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